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Abstract -- Maximum likelihood decoding of

long block codes is not feasable due to large
complexity. Some classes of codes are shown to

be decomposable into multilevel concatenated

codes(MLCC) [3]. For these codes, multistage

decoding provides good trade-off between per-
formance and complexity. In this paper, we de-

rive an upper bound on the probability of block
error for MLCC. We use this bound to evaluate

difference in performance for different decom-

positions of some codes. Examples given show

that a significant reduction in complexity can

be achieved when increasing number of stages of

decoding. Resulting performance degradation

varies for different decompositions. A guide-

line is given for finding good m-level decompo-
sitions.

I. INTRODUCTION

Multistage Decoding (MSD) is an efficient soft deci-
sion decoding method for long decomposable codes,

such as multilevel concatenated codes (MLCC) [1]. Al-

though suboptimum in performance, it greatly reduces

the computational complexity as compared to opti-

mum decoding.
Since its inception in Hemmati's paper [2], Closest

Coset Decoding (CCD) of lulu + v{ codes and general-

izations of CCD have been investigated by several au-

thors. However, only a few papers on the performance

analysis of this method have appeared [3-6]. Further-

more, these methods are restricted to lulu + v I codes
and some others to block modulation codes. The dif-

ferent code-structure of MLCC's precludes application

of the analysis therein to the case of MLCCs.

In [3], an upper bound on the effective error coeffi-

cient (EEC) for 2-stage decoding of MLCC's was de-

rived and some guidelines for choosing a good 2-level

decomposition of Reed Muller codes were given.

In this paper, we first derive an upper bound on block
error probability of MSD of MLCC's, when optimum

decoding of each stage is performed. We first express

the upper bound in terms of all the error coefficients,

and then explain how these coefficients can be ob-

tained using some combinatorial methods and weight
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distributions of inner and outer codes of a MLCC. The

bound enables prediction of the performance of MSD

(two or more levels) without simulation. Therefore an
estimate of performance degradation, when the num-

ber of decoding stages is increased, can be obtained.

II. ANALYSIS OF CCD OF MULTILEVEL

CONCATENATED CODES

For an M-level code C = {B1,B2,...,BM} *

{A1, A2,..., AM}, consider the i-th stage of decoding
for 1 < i < M. At each stage, decoding is assumed to

be complete (an estimate of a transmitted codeword is

always given) soft decision maximum likelihood closest
coset decoding [5].

Let p(0 denote the probability that the i-th stage de-

coder makes an error when all previous (i-1) stages are

correct. Then. conditioning on the i-th stage decoding

being in error, we obtain P, = E:_I p)i). In general,

Pe(0 depends on the codeword at the output of the i-th

inner encoder. However, for binary linear codes, BPSK

transmission and the AWGN channel, P(ei) is the same

for all transmitted codewords [7]. For simplicity, we
assume that the all-zero ¢odeword is transmitted. In

this case, the output of each Bi-encoder at the trans-
mitter is the all-zero codeword in Bi. The received

(hA nB)-tuple r = (r (I), r ('_).... , r ("°_) is sectionalized

into nB sections each of length hA, where ns and nn

are lengths of outer and inner code respectively.

En error at the i-th stage, when CCD is used, occurs

if a nonzero codeword b = (bl,b_.,...,b,_s) 6 B, has

larger correlation than the all-zero codeword z E Bi.

Let a -/ = (a_,a( ..... a_A ) be the codeword with the
best correlation in the coset corresponding to j-th sym-

bol hi, for j = 1,2 ..... ns. If a standard BPSK map-
ping (0 -- 1, 1 -- -1) is applied, then the difference
in metrics of b and z can be bounded by the following

expression:

r4 8 nA

M(b)-M(z) _< Z E (-2_), 1)

j=t.bj;_0t=l,a_=t

where M(.) denotes correlation metric. Thus the prob-

ability of error at the i-th stage is given by

pti) = P(M(b)- M(z) > 0. b 6 B i,b # 0). (2)



For a particular a and b,

T(a,b) =

rib _A

Z Z:
j = 1 ,bj #0 l= 1,a] = I

is a Gaussian randome variable with mean /_ and
variancea 2 given by

= 2A _ w(a), ¢r2=4 1/)(a)

bi¢0 bj¢0

where A is the amplitude of a transmitted BPSI< signal
(SNR=10 log (A2/2 k/n)). It then follows that

P<i)-< Z Z Z P(T(a,b)>0)

beBi _¢o a_2(bi)

=  erfc A  w(a) , (3)
b+ B i a+_0 a_n(b_) _, _0

where f_(bj) represents the coset corresponding to the

symbol bj, and w(.) the weight of a codeword.

Note that for any 0 7_ b 6 Bi 0 # a 6 Ai,

_-'_bi;_0 w(a) _> drain(C)

Definition 1: Define Si(Y) as the number of terms

of the form ½erfc (Av/-_) satisfying

1. Y = _"_bi#0 w(a)

2. b 6 Bi, a E _(bi)

The union bound on the probability of error at the

i-th stage of decoding is then given by

p(i) < Z b,() )_erfc (4)
\ - • /

Y

where the summation is taken over all Y defined above.

Thus

1

i Y

(5)

SI(Y) depends on the symbol weight distribution of

the i-th outer code Bi, the Hamming weight distribu-

tion of the MLC code C and critically on the weight

distribution (of na-tuples) in the cosets of the parti-
tion Ai/A,+t. For inner codes of small lengths the

coset weight distribution can be evaluated easily by an

exhaustive computer search program or using combi-
natorial methods.

III. RESULTS FOR SOME MLCC CODES

Consider the decomposition

RM(64, 42, 16) = {(8, 1.8)(8, 4, 4) 3, (8, 7, 2)3(8, 8. I)} •

{(8, 8, 1), (8, ,I, 4), (8, 0)}

given in [3]. The symbol weight distribution of B1 is

Ns, (0) = 1, NB, (4) = 98, :VB, (6) = 1,176, NB,(7) =

1,344, NB_(8) = 5,573. The symbol weight dis-

tribution of B"- is NB:(0) = 1, NB_(1) = 8,

NB_(2) = 812, NB,(3) = 23,576, NB,(4) = 443,030,

Ns_(5) = 5,315,576, Ns_(6) = 39,867,212, NB_(7) =
170,859,368, NB_(8) = 320,361,329. The coset

weight distributions of A1/A 2 and A2/{0} are given
in Table 1.

To compute Si(Y)withi = 1,2 , we have to deter-

mine how many nAnB-tuples of weight Y can result

from a b E B 1 of symbol weight wa(B1) = X. In

order to answer this question, we must see if a parti-
tion of the integer Y into X parts is possible with each

part belonging to a valid entry in the coset weight dis-

tribution of the partition (8, 8, 1)/(8,4, 4). A partition
of the form 8 = 2 + 3 + 1 + 2 is invalid because none

of the non-zero cosets in the above partition have a

vector of Hamming weight 1 or 3. Furthermore, the

partitions must be counted in an ordered fashion (i.e.,

we are counting the so called distributions of an in-
teger). For example, there are 12 distributions of 16

into parts {4, 4, 2, 6}. The partition table for first two

nonzero weights m both first and second stage are given
in Table 2.

The effective error coefficient in stage-1 is determined

as Sl(8) = 98 x 256 = 25,088. The next two error

coefficients are Sl(10) = 98 × 4 × 43 × 8 = 200704 and
$1(12) = 98 × (6 × 8_ x 42+4_)+46 × 1176 = 5444096.

The higher order error coefficients can be computed in
a similar manner.

In the second stage of decoding, the effective error

coefficient is S"-(8) = 8 + 784 = 792 and the er-

ror coefficient S_.(12) = 18,816. The first three er-

ror coefficients for this 2-level decomposition of RM

{64,42,8) corresponding to weights 8, 10 and 12 are
S_(8) + 5'..(8) = 25,880 , S_(10) = 200,704 and

8:(12) + S_(12) = 5,462,912.

In summary, for the Reed-Muller code C =

(64, 42, 8), an upper bound (with first two significant

terms) on the block error probability with two-stage

decoding is

Pe,2-,_ag. < 2.5 10 4 _ erfc A +

20 (A 07 ) , 4 2, .

The coP_plexity of stage-2 can be reduced by employ-
ing a 3-stage decomposition

RM(64, 42, 8) =

{(8, 1, 8)(8, 4, 4) 3, (8, 7, 2):, (8, 7, 2)(8, 8, 1)} •

{(8, 8, 1 ), {8, 4, 4), {8, 2, 4), {8, 0)} (6)

for which



P_,a-,t_ge < 2.6 104 _ erfc ,4 +

2.0 103 _ erfc + 5.4 erfc .

Notice that the asymptotic loss in decoding gain, due

to this simplification, predicted from the bound is prac-

tically zero, and this agrees with actual simulation re-

suits shown in Figure 1.
Table 1

Coset-#'s Weight of vector
0 2 4 6 8

0 1 - 14 - 1

1-7 4 8 4
Table 2

4

4

4

5

7

6

Partition

{2,2,4,4} 6 42826

{2,2,2,6} 4 434

{2,2,2,4} 4 4a8

Not possible

Not possible

{2,2,2,2,2,2} 1 4_

N1 =Number of partitions. N2 = Number of code-

words in Bi * [A_/Ai+I] per partition.
For long codes, even 2-stage CCD cannot be per-

formed in an optimal manner due to the complexity
of the trellises involved. Hence it is imperative that

tight bounds be derived so that the loss of codizlg gain
at high SNRs due to m-stage (m >_ 3) can be predicted.

The loss in coding gain of 2-stage relative to m-

stage decoding can be determined based on the er-
ror coezficients derived in the paper. For the code

C = (12S,64,16) RM, and n = 2, 3, this is shown

in Figure 2.
The corresponding expressions are

Pe,3-,tage < 1.6 x 109 5 erfc A +

The three stage decomposition has a trellis complex-

ity of 512, 128, and 512 states for the first, second,

and third stage, and the average number of operations

per information bit is 1263. The most of the computa-
tional complexity is due to a large and fully conected
trellis of the third stage, so a way to reduce it is to im-

plement 4-stage decoding by dividing the third stage

into two stages.

The difference between the bounds for 2-stage and 3-

stage at block error rate 10-6 is about 0.6 dB. Since
the simulation of 2-stage decoding with MLD at each

stage is not available, we compared the results of 3-

stage decoding with a 2-stage decoding where the first
stage is decoded using iterative search. We believe this
would be very close in performance of optimum 2-stage

decoding. The difference in performance for this 2-

stage and optimum 3-stage decoding is 0.6 dB as well.
The third example is done for the (72, 52,8 decom-

posable code. Bounds for 3 and 4-stage decoding of

this code are given in Figure 3.
The state complexities are 2,512, 8, 1 for the 4-stage

decoding, and {1024, 8, 1} for the 3-stage decoding.

IV. TRADE-OFFS BETWEEN COMPLEXITY AND

pERFORMANCE

We have shown in the previous section that the perfor-

mance of 2 and 3-stage decoding of (64, 42, 8) code are

almost identical. However, this is true only for 3-stage

decomposition (6). Reduction in state complexity is

not significant, since maximum number of states in the

first stage remains 128 (the same as for 2-stage decom-

position) and the maximum numbers of states at the
second and third stage are 4 and 2 respectively (as com-

pared to 8 states in 2-stage decomposition). The aver-
age number of operations per information bit, though,
is reduced from 393 to 133 (almost three times).

For another 3-stage decomposition,

RM(64, 42, 16) =

{(8, 1,8)(S,4, 4), (8, 4, 4) "2-, (8, 7, 2)3(8, 8, 1)} *

{(s, s, 1), (s, 6,4), (s, 4,4), (s, 0)}, (7)

maximum number of states is reduced to 16 (in the

second stage), so 8 times compared to two stage de-

compoition. Unfortunately, this decomposiyion loses
about 0.5 dB in performance, and the average num-

ber of operations per information bit is 227. Thus the

3-stage decomposition (6) outperforms decomposition

(7), while having smaller computational complexity.
We can see that the performance of the multistage

scheme depends mainly on the first decoding stage.

This suggests that when increasing the number of

stages, lower level stages should be divided, while the
first should be kept as long as the number of states
in the outer code trellis is not too big. In such man-

net, the performance degradation will not be large (in
some cases almost negligible). Since lower level codes

in multilevel decomposition are high rate codes with

complex trellis structure, splitting each of them into
two levels will reduce the complexity significantly (as
we have seen in the example of RM(64,42,8) code).

This can be used to determine a good decomposition

of a code.



V. CONCLUSION
In this paper,wehaveshownhowto boundtheper-
formanceofmt,ltistagedecodingofMultilevelconcate-
natedcodes._Vepresentedexampleswhichshowthat
thesimulationresultsconvergeto derivedboundsat
moderateto highsignal-to-noiseratios.Therefore,an
estimateof the differencein performancefor differ-
ent decompositionsanddifferentnumbersof decod-
ingstagescanbedetermined.Analysisof reduction
in complexitywhenusinglargenumberof decoding
stageshasalsobeendiscussed.
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Figure 1: Simulation results and performance bounds

for RM(64,42,8) code
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Figure 2: Simulation results and performance bounds

for RM(128,64,16) code
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